
Incremental Packrat Parsing

Patrick Dubroy
Y Combinator Research, USA

pat.dubroy@ycr.org

Alessandro Warth
Y Combinator Research, USA

alex.warth@ycr.org

Abstract

Packrat parsing is a popular technique for implementing
top-down, unlimited-lookahead parsers that operate in guar-
anteed linear time. In this paper, we describe a method for
turning a standard packrat parser into an incremental parser

through a simple modification to its memoization strategy.
By łincremental”, we mean that the parser can perform syn-
tax analysis without completely reparsing the input after
each edit operation. This makes packrat parsing suitable for
interactive use in code editors and IDEs — even with large
inputs. Our experiments show that with our technique, an
incremental packrat parser for JavaScript can outperform
even a hand-optimized, non-incremental parser.

CCSConcepts · Software and its engineering→Parsers;

Keywords packrat parsing, incremental parsing

ACM Reference Format:

Patrick Dubroy and Alessandro Warth. 2017. Incremental Packrat

Parsing. In Proceedings of 2017 ACM SIGPLAN International Confer-

ence on Software Language Engineering (SLE’17). ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3136014.3136022

1 Introduction

Packrat parsers [3, 4] are backtracking, recursive-descent
parsers that support unlimited lookaheadwhile guaranteeing
linear parse times. They do this łby saving all intermediate
parsing results as they are computed and ensuring that no
result is evaluated more than once.” [4]
A well-known disadvantage of this technique is its large

memory footprint: because a packrat parser łliterally squir-
rels away everything it has ever computed about the input
text” [4], its memory consumption also grows linearly with
the size of the input. While this usually isn’t a problem for
moderately-sized inputs, to make packrat parsing practical
for larger inputs, researchers have introduced a number of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE’17, October 23–24, 2017, Vancouver, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed

to Association for Computing Machinery.

ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00

https://doi.org/10.1145/3136014.3136022

techniques for reducing the size of the parser’s memo ta-

ble [1, 8, 11, 16].
In this paper, we approach the packrat parser’s memo

table not as a problem, but as an opportunity. Namely, we
present a straightforward modification to the memoization
mechanism used by packrat parsers that enables them to
support incremental parsing [6, 7]. This is particularly useful
in an interactive setting such as a code editor or an Integrated
Development Environment (IDE) where, regardless of the
input size, near-instantaneous parse times are required in
order to provide syntax highlighting, type checking, etc. as
part of a responsive user experience.
The main contributions of this paper are:

(a) An algorithm for interactive packrat parsing, which is
(to our knowledge) the first such algorithm. It requires
no changes to the grammars to support incrementality.

(b) Twomodifications to the core data structure of packrat
parsing, the memo table, that allow our algorithm to
perform efficiently on large inputs with real-world
grammars.

(c) The JavaScript source code for a simple packrat parser,
and for an incremental one based on our algorithm. To-
gether, they show precisely what changes are required
to make a standard packrat parser incremental.

Experiments with our prototype implementation in an
interactive setting (see Section 4) show that the proposed
modification introduces only a small memory overhead (ap-
prox. 12%) and results in a huge speedup (two orders of
magnitude) compared to a standard packrat parser. When
used interactively, our prototype is also faster than Acorn [9],
a best-of-breed, non-incremental JavaScript parser.
The rest of this paper is structured as follows: Section 2

provides a brief overview of packrat parsing. Section 3 de-
scribes our modification to the memoization mechanism, and
two optimizations that make the algorithm more efficient.
Section 4 discusses the effects of our strategy on parse times,
when used in batch mode as well as incrementally, and com-
pares the performance of our prototype to that of Acorn,
a popular non-incremental JavaScript parser. Section 5 dis-
cusses related work, and Section 6 concludes. The appendix
presents the full JavaScript source code for an incremental
parser based on our algorithm.

14

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3136014.3136022
https://doi.org/10.1145/3136014.3136022

SLE’17, October 23–24, 2017, Vancouver, Canada Patrick Dubroy and Alessandro Warth

2 An Overview of Packrat Parsing

The key idea of packrat parsing is that by memoizing all

intermediate parse results as they are computed, it’s possi-
ble to guarantee linear parse times even in the presence of
backtracking and unlimited lookahead.1 To understand how
this works, consider the following grammar fragment from
a simple language of arithmetic expressions2:

expr = num ”+” num

— num ”-” num

num = digit+

digit = ”0”..”9”

When a recursive-descent parser attempts to match the
input ł869–7” with the expr rule shown above, it begins with
the first alternative,

num ”+” num

The first term, num, matches a sequence of one or more digits.
Here, it succeeds after consuming the first three characters
from the input stream (ł869”). Next, the parser attempts to
match a ł+” character, which fails because the next character
in the input stream is ł-”. This causes the parser to backtrack
to position 0, which is where the current alternative started.
Then, the parser tries the second alternative:

num ”-” num

At this point, a conventional recursive-descent parser
would apply the num rule again, duplicating work that was
done for the first alternative — i.e., matching and consuming
the digits at position 0, 1, and 2. In a packrat parser, however,
the result of applying num at position 0 is memoized on the
first attempt, so almost no work is required this time around.
Because the parser already łknows” that num succeeds at
position 0 after consuming three characters, it can simply
update the position to 3 and attempt to match the next part of
the pattern (ł-”), which succeeds. Finally, the parser applies
num at position 4, which consumes the final character (ł7”)
and causes the entire parse of expr to succeed.

2.1 Memoization in Packrat Parsers

When an intermediate parsing result is memoized (e.g., the
result of matching num at position 0), the result is stored in
the parser’s memo table. The memo table can be modeled as
anm× n matrix, with a column for each of the n characters
in the input, and one row for each rule in the grammar. We
refer to each matrix element as a memo table entry.
Figure 1 shows the contents of the memo table (using

a sparse matrix representation) after matching expr as de-
scribed above. Each memo table entry has two fields:

1Packrat parsers are said to support łunlimited lookahead” [4] because in

packrat parsing there is little practical difference between backtracking and

conventional lookahead (i.e., examining but not consuming tokens).
2The concrete syntax is based on a variant of parsing expression gram-

mars [5], a grammar formalism closely associated with packrat parsing.

0 1 2 3 4

8 9 6 – 7

digit

digit

digit

num

expr

num

digit

5 0 1 2 3 4

8 9 6 – 7

digit
nextPos

tree

1

num
nextPos

tree

3

expr
nextPos

tree

5

digit
nextPos

tree

2

…

…

…

…

…

 digit✗

 digit✗

Figure 1. Contents of a packrat parser’s memo table after
successfully parsing ł896-7”. Left: a compact representation
that is used throughout this paper, showing the consumed
interval for successful applications (failed applications in
italics). Right: a detail view showing the contents of the first
two columns.

• nextPos, which is an offset into the input string indi-
cating where the remaining input begins, and

• tree, which contains a parse tree if the application
succeeded, or the special value Fail.

Each time a rule r is applied at position p, the parser checks
to see if there is a memo table entry for r at that position. If
an entry exists, the parser’s current position is updated to
nextPos and the value stored in tree is returned. If not, the
parser evaluates r and records the results in a new memo
table entry. In this way, a packrat parser ensures that no rule
is ever evaluated more than once at a given position.

An important property of packrat parsing and its mem-
oization mechanism is that łthe parsing function for
each nonterminal depends only on the input string, and
not on any other information accumulated during the
parsing process.” [3]
In other words, individual memo table entries

neither capture nor depend upon the specific state
of the parser – łthere is ‘only one way’ to parse a
given nonterminal at any given input position.” [3] This
property is central to our incremental packrat parsing
algorithm, which is described in the next section.

3 Incremental Packrat Parsing

The goal of incremental parsing is to efficiently reparse a
modified input string by reusing as much as possible from the
previous result(s). Conveniently, a regular (non-incremental)
packrat parser records all of its intermediate results in a
memo table — but that memo table is discarded when parsing
completes. The idea of incremental packrat parsing is simple:

15

Incremental Packrat Parsing SLE’17, October 23–24, 2017, Vancouver, Canada

to retain the memo table — or as much of it as possible —
and enable the intermediate parse results to be used across
multiple invocations of the parser.

A standard packrat parser can be modeled by the function:

Parse : (G, s) → T

where G is a grammar, s is an input string, and T is a parse
tree (or the special value Fail). Similarly, an incremental

packrat parser can be modeled by:

Parse : (G, s,M) → (M ′, T)

where M and M ′ are memo tables that (ideally) share some
structure. Together, G, s, and M comprise the state or envi-
ronment of the parser, which is carried forward in an explicit
environment-passing scheme.
When the input is modified, it will also be necessary to

modify the memo table to account for the changes. For this,
we introduce a new function:

ApplyEdit : (s,M, e) → (s′,M ′)

where e is an edit operation consisting of:

• a start position ps,
• an end position pe, and
• a replacement string r.

In the general case, applying e means replacing the char-
acters in the interval [ps, pe) with the characters in r, which
may be of any length. Under this definition, insertion (when
ps = pe) and deletion (when r is empty) are special cases of
replacement.
After modifying s to produce s′, ApplyEdit produces a

newmemo tableM ′ which shares asmany entries as possible
withM . The details of this procedure form the core of our
algorithm, which will be described below.
The remainder of this section describes the primary

contribution of this paper, namely:

(a) a strategy for detecting which memo table entries are
affected by an edit (Section 3.1), allowing the other
entries to be reused on the next parse

(b) a modification to the representation of the memo table
(Section 3.2) which allows ApplyEdit to efficiently
compute M ′, and

(c) an optimization for our algorithm that allows it to op-
erate more efficiently on large inputs with real-world
grammars (Section 3.4).

3.1 Detecting Affected Memo Table Entries

The basic correctness criterion of an incremental parser is
that it must produce the same result as parsing from scratch.
We say that a memo table entry is affected by an edit if, after
editing, the entry must be modified or deleted to preserve
correctness.

e
1
 = (1, 2, “y”)

0 1 2 3 4

8 9 6 – 7

digit

digit

digit

num

expr

num

digit

digit

digit

5 0 1 2 3 4

8 y 6 – 7

digit

digit

num

expr

num

digit

5

Before editing After reparsing

✗

✗

digit✗

digit✗

digit✗

Figure 2.Memo table contents before and after applying edit
operation e1. Left, Using the basic overlap rule, ApplyEdit
will invalidate the three memo table entries that are affected
by the edit. Right, the entries shown in blue are new, rep-
resenting additional work that was done in reparsing the
modified input.

To better explain the technique presented in this paper,
we have implemented an interactive memo table visu-
alization, available at https://ohmlang.github.io/sle17/.
Readers are encouraged to use it to follow along with
the examples in this section.

In explaining our strategy for detecting affected memo
table entries, we will first discuss a subset of possible edit
operations: replacement operations that do not change the
length of the input. After applying the edit to the input string,
the next step is to determine which (if any) of the entries are
affected by the edit.
For example, consider the input ł896–7” which was used

in Section 1, and an edit operation e1 = (1, 2, “y”) that
replaces the ł9” with a ły”. After applying the operation, the
new input string is ł8y6–7”, as shown in Figure 2.
Previously, the digit rule succeeded at position 1; but

now, in a from-scratch parse of the modified input, it will
fail (since ły” is not a digit). To preserve correctness, we can
remove the entry for digit at position 1 from the memo
table, ensuring that the parser will re-attempt digit at that
position.

3.1.1 Basic łOverlap Rule”

In general, we can observe that if the extent of a memo table
entry overlaps with an edit operation e, then the entry is
possibly affected by e. Depending on the edit, it may not

be affected (e.g., if the replacement text is the same as the
original text), but we adopt a conservative approach: any
memo table entry overlapping the edit is considered invalid

and will be removed from the memo table.

16

https://ohmlang.github.io/sle17/

SLE’17, October 23–24, 2017, Vancouver, Canada Patrick Dubroy and Alessandro Warth

e
2
 = (3, 4, “5”)

0 1 2 3 4

8 9 6 – 7

digit

digit

digit

num

expr

num

digit

digit

digit

5

✗

✗

Figure 3.Memo table contents before applying edit opera-
tion e2. The simple ”overlap rule” does not detect that ‘num‘
at position 0 is affected by the change.

By applying this łoverlap rule” to the entire memo table,
we see that the entries for expr and num at position 0 must
also be removed (Figure 2, left). After re-parsing (Figure 2,
right), there are two new entries at position 0 (num and expr)
and a new entry for digit at position 1. num still succeeds at
position 0, but now only consumes a single character (ł8”).
expr also succeeds and consumes the ł8”, but the entire parse
now fails because expr did not consume the entire input.

3.1.2 Problem: Basic Overlap is not Enough

Now, consider a different edit operation e2 = (3, 4, “5”),
shown in Figure 3, which modifies the original input by re-
placing the ł-” with ł5”. Using the same łoverlap rule” as
before, only two entries would be invalidated: digit at posi-
tion 3 and expr at position 0. However, this is not sufficient:
an application of num at position 0 should now consume the
entire input, yet the memo table entry only consumes ł896”,
which would lead to an incorrect incremental parse.

This example demonstrates that the basic łoverlap rule”
is not sufficient to detect all invalid memo table entries. Al-
though the application of num at position 0 did not consume

the character ł6” at position 3, it does depend on it via the
greedy repetition expression digit+, which is responsible
for the application of digit at position 3. Via digit, the num
rule must examine the next character, even if it doesn’t end
up consuming it — as is the case here.
Note that the unlimited lookahead capability of packrat

parsing allows a rule to examine any number of characters,
regardless of how many it consumes. For example:

allOrNothing = ”abcdefg”

— ””

When matched against łabcdef!”, this rule will examine the
entire input for its first alternative, then backtrack and suc-
ceed on the second alternative, consuming nothing.

0 1 2 3 4

8 9 6 – 7

digit

digit

digit

num

expr

num

digit

digit

digit

5

✗

✗

e
2
 = (3, 4, “5”)

nextPos

maxExaminedPos

1

0

nextPos

maxExaminedPos

3

3

nextPos

maxExaminedPos

5

5

Overlaps?

-

-

-

Y

Y

-

-

Y

-

Figure 4. Memo table contents after parsing ł896-7”. The
entry for num at position 0 is invalidated by e2, because its
examined interval overlaps with the edit, though its consumed

interval does not.

3.1.3 Solution: Maximum Examined Position

To address this, we introduce another field to memo table
entries, calledmaximum examined position ormaxExamined-

Pos, which records the furthest position examined in the
input stream over the entire course of parsing a rule. An
input position is examined when either (a) the character at
that position is consumed, or (b) the value of the character
is used to make a parsing decision.
In practical terms, the examined interval (defined as the

closed interval [p,maxExaminedPos]) of a rule applica-
tion contains all of the characters that could have influenced
the result of parsing that rule. By definition, the examined
interval of an expression covers the examined intervals of
all its subexpressions.
Figure 4 shows a memo table whose entries record both

the next position and the maximum examined position. Note
that the examined interval for num at position 0 does in fact
overlap with the edit operation e2. Thus, we can preserve
correctness by invalidating entries based on their examined
interval rather than their consumed interval.

Intuitively, this should make sense: the examined interval
of a rule application represents the entire portion of the input
that could possibly have influenced its result.Thememo table
entry should be invalidated if and only if the edit operation
affects that portion of the input.

3.2 Relocating Memo Table Entries

As long as the length of the input does not change, the inval-
idation strategy described above is sufficient. After invalidat-
ing any overlapping entries, the remainder of the memo table
can be reused to parse the new input. However, when the
length of the input does change, such as when an insertion or
deletion occurs, some of the memo table entries will require
additional processing.

17

Incremental Packrat Parsing SLE’17, October 23–24, 2017, Vancouver, Canada

nextPos

maxExaminedPos

3

2

tree …

digit

0 1 2 3

8 9 6

nextPos

maxExaminedPos

3

2

tree …

digit

0 1 2 3

Absolute positions

must be updated

4

-

5

7

…

…

…

Figure 5. Deleting the character at position 1 means delet-
ing the corresponding column from the memo table. The
entry for digit at position 3 is now at position 2, requiring
nextPos and maxExaminedPos to be updated accordingly.

For example, consider an edit e3 = (1, 2, ‘”)which deletes
the ł9” from the original input, resulting in ł86–7”. When the
ł9” is deleted, the characters past position 1 (ł6–7”) are shifted
left by one position. After modifying the input, we must
change the memo table accordingly, which means deleting
column 1 and shifting the other columns left by one position,
as shown in Figure 5.
The entry for digit that was previously at position 2 is

now at position 1. However, its nextPos value is 3, which
would indicate that it consumes two characters (which isn’t
right). Since nextPos and maxExaminedPos are absolute po-
sitions, their values need to be updated each time a memo
table entry is relocated.
In a real-world scenario, such as inserting characters at

the beginning of a large file, the cost of such updates would
eliminate most of the benefits of incremental parsing. Our
solution to this problem is to make the individual memo
table entries position-independent, so that they be relocated
at no extra cost. To do this, we replace the nextPos property
of memo table entries with a relative offset, which we call
matchLength. Similarly, the examined interval of an entry is
stored as examinedLength. This is a straightforward change
in most packrat parsing implementations, and does not affect
the asymptotic complexity of parsing.

3.3 An Algorithm for ApplyEdit

In Section 3.1, we described howwe use the examined interval

to detect memo table entries which are invalidated by an
edit operation. In Section 3.2, we explained how we store
memo table entries in a position-independent manner so
that they can be relocated efficiently. Now we describe how
these two techniques can be used together to implement the
ApplyEdit procedure.

Recall the definition of ApplyEdit which we introduced
at the beginning of this section:

ApplyEdit : (s,M, e) → (s′,M ′)

Given an input string s, a memo table M , and an edit
operation e,ApplyEdit produces themodified input string s′,
and a new memo tableM ′ that can be used to incrementally
parse s′. A basic implementation consists of the following
steps:

Step 1 Apply the edit operation to s, producing s′.
Step 2 Adjust the memo table: remove all entries from

the columns inside the edit interval, and, if necessary,
add or delete columns and relocate any columns to the
right of the interval.

Step 3 Scan the memo table, removing any remaining
entries whose examined interval overlaps the edit in-
terval. Finally, return s′ andM ′.

Note that in Step 3, only the portion to the left of the edit
interval needs to be scanned: invalid entries that begin inside

the edit interval are removed in Step 2, and any entries to the
right (the relocated entries) cannot be affected by the edit.
However, it is possible that those entries are no longer used
in the current parse — e.g., if the edit caused those characters
to become part of a comment.
Together, these three steps make up a complete imple-

mentation of ApplyEdit and the core of our technique for
incremental packrat parsing. In the next section, we will
discuss one way that it can be optimized.

3.4 Analysis and Optimization

The implementation of ApplyEdit presented above has a
complexity of O(m × n), where n is the size of the input
andm is the number of rules in the grammar. Assuming that
string concatenation (step 1) and array concatenation (step 2)
are both O(n), the running time is dominated by the memo
table invalidation in step 3. In the worst case, invalidation
requires visiting O(n) columns in the memo table, and at
each column, scanning O(m) memo table entries to check if
they overlap the edit interval. While this does not affect the
asymptotic complexity of packrat parsing (which is already
O(m× n)), it can result in poor performance in real-world
use.

18

SLE’17, October 23–24, 2017, Vancouver, Canada Patrick Dubroy and Alessandro Warth

3.4.1 Maximum Examined Length

To improve the performance of our invalidation algorithm,
we modify the memo table layout so that each column can
keep track of the largest examined interval of all its entries.
We store this value in a per-column property called maxEx-

aminedLength. This way, when we are scanning the columns
in step 3 of ApplyEdit, we can avoid scanning all the entries
in a column if maxExaminedLength shows that none of its
entries overlap with the edit.

During parsing, a column’s maxExaminedLength can only
grow, because memo table entries are never deleted during
parsing.Thismeans thatmaxExaminedLength can be updated
in constant time whenever a new memo table entry is added
to the column.

Individual memo table entries can only deleted when Ap-

plyEdit is already scanning all of the entries in a given
column. Thus, the new value ofmaxExaminedLength (in case
it is smaller) can also be calculated with a constant amount of
extra work. Therefore, maintaining the maximum examined
length on a per-column basis does not affect the asymptotic
complexity of either our invalidation algorithm, or packrat
parsing in general.

3.5 Putting It All Together

Figure 6 shows the final version of our ApplyEdit algo-
rithm, including themaximum examined length optimization.
Given the input string s, the memo table M , and an edit op-
eration e, ApplyEdit produces the modified input s′ and a
new memo tableM ′ which shares withM any entries not
affected by the edit.

To perform an incremental parse, the results of ApplyEdit
are passed to Parse, which makes use of the pre-filled memo
table entries, and returns a new memo table with potentially
more entries. In a code editor or IDE, a typical use would be
to reparse the input after applying every edit:

M = a new memo table
s = an empty string
for each edit operation e

s,M = ApplyEdit(s,M, e)
M = Parse(G, s,M)

Alternatively, edits can be batched together by calling Ap-

plyEdit multiple times before passing the results to Parse.
The implementation of Parse is largely the same as in a

standard packrat parser, with the following exceptions:

1. It maintains the examinedLength property of memo ta-
ble entries and themaxExaminedPos property of memo
table columns.

2. It returns its memo table at the end of the parse.

We do not present an algorithm for (1) here, as the details
are implementation-dependent (though straightforward). For
an example, see the matchmethods ofIncrementalMatcher
and IncRuleApplication in the appendix of this paper.

ApplyEdit(s,M, e)

▷ Step 1: Apply the edit to s

1 s′ = Concat(s[0 . . e.poss], e.r , s[e.pose . .])

▷ Step 2: Adjust the memo table
2 M ′ = Concat(M [0 . . e.poss],

a list of e.r . length new columns,
M [e.pose . .])

▷ Step 3: Invalidate overlapping entries
3 for i = 0 to e.poss
4 col = M ′[i]
5 // Does any entry in this column overlap e?
6 if i+ col.maxExaminedLength ≤ e.poss
7 continue to next column

8 newMax = 0
9 for each entry in col

10 if i+ entry.examinedLength > e.poss
11 Delete entry fromM ′

12 elseif entry.examinedLength > newMax

13 newMax = entry.examinedLength

14 col.maxExaminedLength = newMax

15 return s′,M ′

Figure 6. Pseudocode for ApplyEdit, the core of incremen-
tal packrat parsing. Lines 5-7, 8, and 12-14 implement the
maximum examined length optimization (see Section 3.4.1).

4 Evaluation

To evaluate the performance of our algorithm in real-world
use, we implemented two different packrat parsers for the
ECMAScript 5.1 language (ES5), a widely-supported version
of JavaScript (the parsers themselves are also written in
JavaScript).

Our incremental packrat parsing algorithm was orig-
inally developed for Ohm [20, 21], our open-source
packrat parsing framework. In order to better evalu-
ate the techniques presented in this paper, we built
a minimal packrat parsing library in JavaScript (pre-
sented in the appendix), which is the basis for the ES5
parsers described in this section. The full source code
for the library and the ES5 grammar can be found at
https://ohmlang.github.io/sle17/.

The first parser is a standard (non-incremental) packrat
parser, implemented using an object-oriented version of
parser combinators. We refer to this as łEs5-Standard”.
The second parser (łEs5-Incremental”) is an incremental
parser using the techniques described in this paper. Finally,

19

https://ohmlang.github.io/sle17/

Incremental Packrat Parsing SLE’17, October 23–24, 2017, Vancouver, Canada

 1

 10

 100

 1000

(a) Es5-Standard

 1

 10

 100

 1000

(b) Es5-Incremental

 1

 10

 100

 1000

(c) Acorn

Figure 7. Response times in milliseconds (log scale) for a series of 891 simulated edits to a 279 KB JavaScript source file. Each
measurement includes the time to apply the edit to the input string as well as the time to parse the modified input.

we also compare both our parsers against Acorn, a popular,
high-performant, hand-optimized JavaScript parser.

All benchmarkswere run on anAppleMacBook Pro (Retina,
13-inch, Early 2015) with a 2.9 GHz Intel Core i5 processor
and 16 GB RAM, running OSX version 10.11.6 łEl Capitan”
and Node.js version 6.1.0. For Acorn, we used version 5.1.2
with the default options, except that ecmaVersion option
was set to 5 (which selects the latest version of ES5, i.e.,
ECMAScript 5.1).

4.1 Parsing Performance

To evaluate the performance of the parsers in a representa-
tive setting, we created a benchmark that simulates a typical
source code editing session. To do so, we recorded every
keystroke (typos and all) as one of the authors manually
retyped the contents of a recent commit to a single, large
(279 KB, 4761 SLOC) file in Ohm [20, 21], our open-source
parser generator.3 The reified edit log consisted of 891 edit
operations roughly clustered around the middle of the file.
Figure 7 graphs the response times for each parser over

the course of the editing session. This measurement includes
the time to apply the edit to the input string as well as the
time to reparse the new string.
On the initial parse, Es5-Standard (Fig. 7a) and Es5-

Incremental (Fig. 7a) are significantly slower than Acorn
(Fig. 7c), requiring 1562ms and 1483ms respectively. Acorn is
more than an order of magnitude faster, taking only 118ms.
On subsequent parses, the incremental parser is consis-

tently faster than the non-incremental one — reparsing the
modified source roughly two orders of magnitude faster
(mean 6.2ms, median 4.7ms). On average, it also outperforms
Acorn (mean 23.7ms, median 23.6ms) by a significant margin.

The reason for the differences should be clear: each time
an edit happens, Es5-Standard and Acorn must parse the
entire source code from scratch, while subsequent parses

3Based on a recent empirical study of source code file sizes [10], this is in

the 99th percentile.

by Es5-Incremental require only a small amount of extra
work, which is why the parse times are only around 5–6ms.

The bimodal performance of Es5-Standard (Fig. 7a) —
which can also be seen in Acorn’s results — is due to the
fact that some edits leave the source code in a syntactically-
invalid state, which results in a faster parse. The spikes in
Figure 7b are related to garbage collection: they correspond
to times where incremental marking is active, resulting in
periods of reduced JavaScript performance.

4.1.1 Improving Initial Parse Time

The pure throughput of our naively-written packrat parsers
is not at all competitive with a hand-optimized parser, as the
initial parse times in Figure 7 clearly show. Fortunately, the
literature on packrat parsing provides a number of optimiza-
tions that could be used to improve the throughput [8, 11, 16],
which we discuss in Section 5.

Additionally, our incremental parser can be modified to
support a soft cap on response times by returning from Parse

before the parse is complete. This allows the UI to remain
responsive while the initial parse makes progress in small
increments. In some use cases (e.g. syntax highlighting), the
partial results of the parse may even be immediately useful.

4.2 Space Efficiency

The major downside of packrat parsing is that its use of
memoization results in high memory usage in typical work-
loads. The technique described in this paper does not directly
address this issue; in fact, it slightly increases the memory
requirements of packrat parsing, as we discuss below. How-
ever, we argue that incremental parsing is a way to get more
value in the space-time tradeoff, as it greatly increases the
amount of time saved per byte of storage.

In Section 3, we described the memo table layout required
by our technique. The main difference from a standard pack-
rat parser is the examinedLength property that is added to
every memo table entry. Though it means storing at least

20

SLE’17, October 23–24, 2017, Vancouver, Canada Patrick Dubroy and Alessandro Warth

 0

 100

 200

 300

 400

 500

html5shiv
10 KB

underscore
52 KB

react
133 KB

jquery
262 KB

lodash
527 KB

M
e

m
o

 t
a

b
le

 s
iz

e
 (

M
B

)

+11.3%+11.3%

+11.3%+11.3%

+11.6%+11.6%

+11.4%+11.4%

+11.7%+11.7%

Figure 8. Memory usage for the memo table in Es5-

Standard (dark blue) and Es5-Incremental (light blue) after
parsing several popular JavaScript libraries.

three pieces of information per entry instead of just two,
the actual amount of extra memory this requires is highly
implementation dependent. Figure 8 shows the experimental
results of the memory usage required by our standard and
incremental ES5 parsers to parse five different JavaScript
libraries of varying size.
The mean additional memory usage for the memo table

is 11.5%. The majority of this is due to the extra field (exam-

inedLength) stored in each memo table entry, and the remain-
der can be attributed to per-column maxExaminedLength

property required by our technique. The small variation in
the additional memory usage (11.3–11.7%) is likely due to
the fact that different inputs will have a varying number of
memo table entries per column.

4.3 Discussion

For user interface responsiveness, 100ms is recognized in the
human-computer interaction literature as the upper limit
at which a system is perceived to be reacting łinstanta-
neously” [15][2]. However, a naively-implemented pack-
rat parser can take much longer than this to parse even
moderately-sized inputs.

A common solution is to perform parsing on a background
thread. However, this adds significant implementation com-
plexity — especially in JavaScript, which does not (yet) sup-
port threads with shared memory. And if the editor is relying
on the parser to produce layout and styling information, then
long response times will still result in a degraded user expe-
rience.

As we have demonstrated in this section, our incremental
packrat parsing technique offers extremely low parse times
in interactive use, at the cost of some extra memory usage
for the memo table. We believe this to be a worthwhile trade-
off for in cases where the inputs may be large (as in our

experimental evaluation) and where instantaneous feedback
is desired.

5 Related Work

5.1 Incremental Parsing

The idea of incremental parsing was first introduced by
Ghezzi and Mandrioli [6, 7] as an extension of LR parsing.
Much of the research that followed [14, 19] focused on im-
proving the performance of incremental shift-reduce parsers,
and on attaining optimal node reuse [19]. In contrast, our
technique is based on packrat parsing, which differs from
LR(k) in that is top-down and supports unlimited lookahead.
Techniques for incremental top-down parsing [17, 18]

have mostly focused on LL(1) grammars, which is more
restrictive than the class of languages support by packrat
parsing. These solutions have mostly focused on single-site
editing that is tightly integrated with an editor. Our algo-
rithm supports any number of edit sites (via repeated calls to
ApplyEdit between calls to Parse) and requires no special
editor integration, except the ability to detect and react to
the user’s edit operations.
Papa Carlo [13] is a parsing library for Scala that can

be used to build incremental parsers. While it is based on
Parsing Expression Grammars (PEGs) [5], it is not a true
packrat parser, as it only employs memoization in a limited
way, and therefore does not guarantee linear parse times.

Support for incremental parsing in Papa Carlo is based on
a notion of source code fragments, which are (possibly nested)
substrings of the input for which parsing results are cached.
The author of a grammar must manually define the syntax
of its code fragments — e.g., for C/C++ one type of code
fragment would be anything between ł{” and ł}” tokens —
and ensure that łtheir syntactical meaning [is] invariant to
[their] internal content” [13], i.e., the code inside a fragment
must always be parsed by the same rule in the grammar [12].
In contrast, by leveraging the packrat parser’s memoiza-

tion mechanism, our approach does not introduce any new
concepts that must be understood by grammar authors, or
require them to do any additional work in order to enjoy the
benefits of incremental parsing. Additionally, our technique
makes all partial parsing results available for reuse, not just
the results of selected rules.

5.2 Optimization of Packrat Parsers

As discussed in Section 4, several researchers have intro-
duced techniques for reducing the size of a packrat parser’s
memo table, with the aim of both reducing memory usage
and improving throughput. For example, some packrat parser
implementations allow the grammar author to restrict the
use of memoization to a subset of the rules in the gram-
mar [1, 8]. Others have proposed similar, automated ap-
proaches based on static [8, 16] or dynamic [11] analysis
of the grammars.

21

Incremental Packrat Parsing SLE’17, October 23–24, 2017, Vancouver, Canada

Most of these techniques are also applicable to incremen-
tal packrat parsers, though special care should be taken in
order to maintain the parser’s linear time guarantee (as is
true for standard, non-incremental packrat parsers). Also,
many of these optimizations improve batch performance,
but their reduced use of memoization can negatively impact
incremental response time. In incremental packrat parsing,
any memoized result could prove useful in the future, and
one must be careful to avoid requiring łtoo much” work to
be done in response to each edit operation.

6 Conclusions and Future Work

In this paper, we presented an algorithm for incremental
packrat parsing — to our knowledge, the first such algo-
rithm. Our technique is based on a slight modification to the
standard packrat memoization strategy, and it requires no
grammar modification to achieve incrementality. Its simplic-
ity is demonstrated by our inclusion, in the appendix of this
paper, of the full JavaScript source code for both a standard
packrat parser and an incremental variant.

We described two key optimizations — relocatable memo
table entries and the per-column maximum examined length

property — which ensure that our algorithm is efficient on
large inputs with real-world grammars.
In an experimental evaluation, we compared an incre-

mental parser based on our algorithm to a standard packrat
parser. Our experiments show that our algorithm delivers
large performance gains (two orders of magnitude) at the
cost of approximately 12% more memory usage and only
slightly worse batch parsing performance.

We also showed that with a large input in interactive use,
a naively-implemented packrat parser that uses our algo-
rithm can outperform a hand-optimized, non-incremental
JavaScript parser.

In the future, we plan to investigate how the packrat pars-
ing optimizations described in Section 5 can be combined
with our algorithm, in order to balance memory usage and
batch parsing performance with low incremental response
times.
Also, we would like to explore how the algorithm pre-

sented in this paper can be combined with incremental se-
mantic analysis. This could be used to support such features
as incremental type checking and type-directed autocomple-
tion.

We have already successfully implemented our technique
in Ohm, a popular PEG-based parsing toolkit [20, 21] for
JavaScript. As the Ohm community experiments with our
implementation, we hope to learn more about its perfor-
mance in a wider set of use cases.

Appendix: Source Code

This section presents the JavaScript (ES6) source code of a set
of classes for building incremental and non-incremental pack-
rat parsers. The incremental functionality is contained in the
IncrementalMatcher and IncRuleApplication classes.

class Matcher –

constructor(rules) –

this.rules = rules;

˝

match(input) –

this.input = input;

this.pos = 0;

this.memoTable = [];

var cst = new RuleApplication('start').eval(this);

if (this.pos === this.input.length) –

return cst;

˝

return null;

˝

hasMemoizedResult(ruleName) –

var col = this.memoTable[this.pos];

return col && col.has(ruleName);

˝

memoizeResult(pos, ruleName, cst) –

var col = this.memoTable[pos];

if (!col) –

col = this.memoTable[pos] = new Map();

˝

if (cst !== null) –

col.set(ruleName,

–cst: cst, nextPos: this.pos˝);

˝ else –

col.set(ruleName, –cst: null˝);

˝

˝

useMemoizedResult(ruleName) –

var col = this.memoTable[this.pos];

var result = col.get(ruleName);

if (result.cst !== null) –

this.pos = result.nextPos;

return result.cst;

˝

return null;

˝

consume(c) –

if (this.input[this.pos] === c) –

this.pos++;

return true;

˝

return false;

˝

˝

22

SLE’17, October 23–24, 2017, Vancouver, Canada Patrick Dubroy and Alessandro Warth

class IncrementalMatcher –

constructor(rules) –

this.rules = rules;

this.memoTable = [];

this.input = '';

˝

match() –

this.pos = 0;

this.maxExaminedPos = -1;

var cst =

new IncRuleApplication('start').eval(this);

if (this.pos === this.input.length) –

return cst;

˝ else –

return null;

˝

˝

hasMemoizedResult(ruleName) –

var col = this.memoTable[this.pos];

return col && col.memo.has(ruleName);

˝

memoizeResult(pos, ruleName, cst) –

var col = this.memoTable[pos];

if (!col) –

col = this.memoTable[pos] = –

memo: new Map(),

maxExaminedLength: -1

˝;

˝

var examinedLength =

this.maxExaminedPos - pos + 1;

if (cst !== null) –

col.memo.set(ruleName, –

cst: cst,

matchLength: this.pos - pos,

examinedLength: examinedLength

˝);

˝ else –

col.memo.set(ruleName, –

cst: null,

examinedLength: examinedLength

˝);

˝

col.maxExaminedLength = Math.max(

col.maxExaminedLength,

examinedLength);

˝

useMemoizedResult(ruleName) –

var col = this.memoTable[this.pos];

var result = col.memo.get(ruleName);

this.maxExaminedPos = Math.max(

this.maxExaminedPos,

this.pos + result.examinedLength - 1);

if (result.cst !== null) –

this.pos += result.matchLength;

return result.cst;

˝

return null;

˝

consume(c) –

this.maxExaminedPos =

Math.max(this.maxExaminedPos, this.pos);

if (this.input[this.pos] === c) –

this.pos++;

return true;

˝

return false;

˝

applyEdit(startPos, endPos, r) –

var s = this.input;

var m = this.memoTable;

// Step 1: Apply edit to the input

this.input =

s.slice(0, startPos) + r + s.slice(endPos);

// Step 2: Adjust memo table

this.memoTable = m.slice(0, startPos).concat(

new Array(r.length).fill(null),

m.slice(endPos));

// Step 3: Invalidate overlapping entries

for (var pos = 0; pos ¡ startPos; pos++) –

var col = m[pos];

if (col != null &&

pos + col.maxExaminedLength ¿ startPos) –

var newMax = 0;

for (var [ruleName, entry] of col.memo) –

var examinedLen = entry.examinedLength;

if (pos + examinedLen ¿ startPos) –

col.memo.delete(ruleName);

˝ else if (examinedLen ¿ newMax) –

newMax = examinedLen;

˝

˝

col.maxExaminedLength = newMax;

˝

˝

˝

˝

23

Incremental Packrat Parsing SLE’17, October 23–24, 2017, Vancouver, Canada

class RuleApplication –

constructor(ruleName) –

this.ruleName = ruleName;

˝

eval(matcher) –

var name = this.ruleName;

if (matcher.hasMemoizedResult(name)) –

return matcher.useMemoizedResult(name);

˝ else –

var origPos = matcher.pos;

var cst = matcher.rules[name].eval(matcher);

matcher.memoizeResult(origPos, name, cst);

return cst;

˝

˝

˝

class IncRuleApplication –

constructor(ruleName) –

this.ruleName = ruleName;

˝

eval(matcher) –

var name = this.ruleName;

if (matcher.hasMemoizedResult(name)) –

return matcher.useMemoizedResult(name);

˝ else –

var origPos = matcher.pos;

var origMax = matcher.maxExaminedPos;

matcher.maxExaminedPos = -1;

var cst = matcher.rules[name].eval(matcher);

matcher.memoizeResult(origPos, name, cst);

matcher.maxExaminedPos = Math.max(

matcher.maxExaminedPos,

origMax);

return cst;

˝

˝

˝

class Terminal –

constructor(str) –

this.str = str;

˝

eval(matcher) –

for (var i = 0; i ¡ this.str.length; i++) –

if (!matcher.consume(this.str[i])) –

return null;

˝

˝

return this.str;

˝

˝

class Choice –

constructor(exps) –

this.exps = exps;

˝

eval(matcher) –

var origPos = matcher.pos;

for (var i = 0; i ¡ this.exps.length; i++) –

matcher.pos = origPos;

var cst = this.exps[i].eval(matcher);

if (cst !== null) –

return cst;

˝

˝

return null;

˝

˝

class Sequence –

constructor(exps) –

this.exps = exps;

˝

eval(matcher) –

var ans = [];

for (var i = 0; i ¡ this.exps.length; i++) –

var exp = this.exps[i];

var cst = exp.eval(matcher);

if (cst === null) –

return null;

˝

if (!(exp instanceof Not)) –

ans.push(cst);

˝

˝

return ans;

˝

˝

class Not –

constructor(exp) –

this.exp = exp;

˝

eval(matcher) –

var origPos = matcher.pos;

if (this.exp.eval(matcher) === null) –

matcher.pos = origPos;

return true;

˝

return null;

˝

˝

24

SLE’17, October 23–24, 2017, Vancouver, Canada Patrick Dubroy and Alessandro Warth

class Repetition –

constructor(exp) –

this.exp = exp;

˝

eval(matcher) –

var ans = [];

while (true) –

var origPos = matcher.pos;

var cst = this.exp.eval(matcher);

if (cst === null) –

matcher.pos = origPos;

break;

˝ else –

ans.push(cst);

˝

˝

return ans;

˝

˝

Acknowledgments

The authors would like to thank Jonathan Edwards, Marijn
Haverbeke, Marko Röder, Nada Amin, Saketh Kasibatla, Sean
McDirmid, Yoshiki Ohshima, and the anonymous reviewers
for feedback on this work and earlier drafts of the paper.

References

[1] Ralph Becket and Zoltan Somogyi. 2008. DCGs +
Memoing = Packrat Parsing but Is It Worth It?. In Proc.

of Practical Aspects of Declarative Languages: 10th

International Symposium (PADL 2008). Springer,
182–196. https://doi.org/10.1007/978-3-540-77442-6 13

[2] Stuart K. Card, Thomas P. Moran, and Allen Newell.
1980. The Keystroke-Level Model for User Performance
Time with Interactive Systems. Commun. ACM 23, 7
(1980), 396–410. https://doi.org/10.1145/358886.358895

[3] Bryan Ford. 2002. Packrat Parsing: A Practical

Linear-Time Algorithm with Backtracking. Master’s
thesis. Massachusetts Institute of Technology.

[4] Bryan Ford. 2002. Packrat Parsing: Simple, Powerful,
Lazy, Linear Time. In Proc. of the Seventh ACM

SIGPLAN International Conference on Functional

Programming (ICFP ’02), Vol. 37. ACM, 36–47.
https://doi.org/10.1145/581478.581483

[5] Bryan Ford. 2004. Parsing Expression Grammars: A
Recognition-Based Syntactic Foundation. In Proc. of the

31st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’04). ACM, 111–122.
https://doi.org/10.1145/964001.964011

[6] Carlo Ghezzi and Dino Mandrioli. 1979. Incremental
Parsing. ACM Transactions on Programming Languages

and Systems (TOPLAS) 1, 1 (Jan. 1979), 58–70.
https://doi.org/10.1145/357062.357066

[7] Carlo Ghezzi and Dino Mandrioli. 1980. Augmenting
Parsers to Support Incrementality. J. ACM 27, 3 (July
1980), 564–579. https://doi.org/10.1145/322203.322215

[8] Robert Grimm. 2006. Better Extensibility Through
Modular Syntax. In Proc. of the 27th ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI ’06). ACM, 38–51.
https://doi.org/10.1145/1133981.1133987

[9] Marijn Haverbeke. 2017. Acorn webpage. (2017).
https://github.com/ternjs/acorn

[10] Israel Herraiz, Daniel M. German, and Ahmed E.
Hassan. 2011. On the Distribution of Source Code File
Sizes.. In ICSOFT (2). 5–14.

[11] Kimio Kuramitsu. 2015. Packrat Parsing with Elastic
Sliding Window. Journal of Information Processing 23, 4
(7 2015), 505–512. https://doi.org/10.2197/ipsjjip.23.505

[12] Ilya Lakhin. 2013. Incremental Parser Based on
Invariant Syntax Fragments (LtU post). (2013).
http://lambda-the-ultimate.org/node/4840

[13] Ilya Lakhin. 2013. Papa Carlo webpage. (2013).
http://lakhin.com/projects/papa-carlo/

[14] J.-M. Larchevêque. 1995. Optimal Incremental Parsing.
ACM Transactions on Programming Languages and

Systems (TOPLAS) 17, 1 (Jan. 1995), 1–15.
https://doi.org/10.1145/200994.200996

[15] Robert B. Miller. 1968. Response Time in
Man-Computer Conversational Transactions. In Proc.

of the December 9–11, 1968, Fall Joint Computer

Conference, Part I. ACM, 267–277.
https://doi.org/10.1145/1476589.1476628

[16] Kota Mizushima et al. 2010. Packrat Parsers Can
Handle Practical Grammars in Mostly Constant Space.
In Proc. of PASTE ’10. ACM, 29–36.
https://doi.org/10.1145/1806672.1806679

[17] Arvind M. Murching, Y.V. Prasad, and Y.N. Srikant.
1990. Incremental Recursive Descent Parsing.
Computer Languages 15, 4 (1990), 193–204.
https://doi.org/10.1016/0096-0551(90)90020-P

[18] John J. Shilling. 1993. Incremental LL (1) Parsing in
Language-Based Editors. IEEE Transactions on Software

Engineering 19, 9 (1993), 935–940.
https://doi.org/10.1109/32.241775

[19] Tim A. Wagner and Susan L. Graham. 1998. Efficient
and Flexible Incremental Parsing. ACM Transactions on

Programming Languages and Systems (TOPLAS) 20, 5
(Sept. 1998), 980–1013.
https://doi.org/10.1145/293677.293678

[20] Alessandro Warth, Patrick Dubroy, et al. 2016. Ohm
webpage. (2016). https://ohmlang.github.io/

[21] Alessandro Warth, Patrick Dubroy, and Tony
Garnock-Jones. 2016. Modular Semantic Actions. In
Proc. of the 12th Symposium on Dynamic Languages

(DLS 2016). ACM, 108–119.
https://doi.org/10.1145/2989225.2989231

25

https://doi.org/10.1007/978-3-540-77442-6_13
https://doi.org/10.1145/358886.358895
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/357062.357066
https://doi.org/10.1145/322203.322215
https://doi.org/10.1145/1133981.1133987
https://github.com/ternjs/acorn
https://doi.org/10.2197/ipsjjip.23.505
http://lambda-the-ultimate.org/node/4840
http://lakhin.com/projects/papa-carlo/
https://doi.org/10.1145/200994.200996
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1806672.1806679
https://doi.org/10.1016/0096-0551(90)90020-P
https://doi.org/10.1109/32.241775
https://doi.org/10.1145/293677.293678
https://ohmlang.github.io/
https://doi.org/10.1145/2989225.2989231

	Abstract
	1 Introduction
	2 An Overview of Packrat Parsing
	2.1 Memoization in Packrat Parsers

	3 Incremental Packrat Parsing
	3.1 Detecting Affected Memo Table Entries
	3.2 Relocating Memo Table Entries
	3.3 An Algorithm for
	3.4 Analysis and Optimization
	3.5 Putting It All Together

	4 Evaluation
	4.1 Parsing Performance
	4.2 Space Efficiency
	4.3 Discussion

	5 Related Work
	5.1 Incremental Parsing
	5.2 Optimization of Packrat Parsers

	6 Conclusions and Future Work
	Acknowledgments
	References

