
Modular Semantic Actions

Alessandro Warth Patrick Dubroy

Y Combinator Research, USA

{alex.warth,pat.dubroy}@ycr.org

Tony Garnock-Jones

Northeastern University, Boston, USA

tonyg@ccs.neu.edu

Abstract

Parser generators give programmers a convenient and declar-

ative way to write parsers and other language-processing

applications, but their mechanisms for extension and code

reuse often leave something to be desired. We introduce Ohm,

a parser generator in which both grammars and their inter-

pretations can be extended in safe and modular ways. Unlike

many similar tools, Ohm completely separates grammars and

semantic actions, avoiding the problems that arise when these

two concerns are mixed. This paper describes the particular

way in which Ohm achieves this separation, and discusses

the resulting benefits to modularity and extensibility.

Categories and Subject Descriptors D.1.5 [Programming

Techniques]: Object-Oriented Programming; D.3.3 [Pro-

gramming Languages]: Language Constructs and Features

Keywords parser generators, modularity, extensibility

1. Introduction

Parser generators and compiler-compilers like Yacc [8],

ANTLR [13], and OMeta [18] give programmers a conve-

nient and declarative way to write parsers and other language-

processing applications. These tools are built around the

notion of a grammar, which the programmer writes to spec-

ify the syntax of the language.

As an example, the following is a fragment of an OMeta/JS

[17] grammar for arithmetic expressions:

mulExp = mulExp "*" priExp

| priExp

priExp = "(" exp ")"

| number

A “pure” grammar like the one above does not specify

what to do with valid inputs. To do this, the programmer

writes semantic actions in the grammar. A semantic action is

a snippet of code — typically written in a different language —

that, when executed, will produce the desired value or effect.

Together, the semantic actions give a specific meaning (an

interpretation) to the language defined by the grammar.

Here is how a programmer might add semantic actions

to the grammar fragment above in order to implement a

calculator:

mulExp = mulExp:x "*" priExp:y -> (x * y)

| priExp:e -> e

priExp = "(" exp:e ")" -> e

| number:n -> n

The first semantic action in the mulExp rule, for instance,

computes the value of a “times” expression. We give names

to two sub-expressions (x and y) so that we can refer to their

values in the semantic action, which is written to the right

of the ->. The values of the sub-expressions themselves are

also computed by semantic actions. Note that bindings —

assignments of names to sub-expressions — and semantic

actions are not specific to OMeta; most parser generators

(e.g., Yacc and ANTLR) work this way, though their syntax

for bindings and semantic actions may differ.

Mixing grammars and semantic actions in this way is

convenient for small examples, but it sacrifices the following

important properties:

• Modularity. The second version of our arithmetic gram-

mar is no longer a grammar but an interpreter. And be-

cause the grammar and semantic actions are mixed, if we

later realize that we also need a compiler or syntax high-

lighter for the same language, we will have to duplicate the

part of the code that specifies the syntax of the language.

From this point on, we will have to manually ensure that

the language that is accepted by these different grammars

is the same, which is both difficult and error-prone.

• Readability. Grammars are cluttered with bindings and

semantic actions, which makes it more difficult for pro-

grammers to “see” the syntax of the language that they

specify.

• Extensibility. Parser generators that support grammar in-

heritance, e.g., OMeta, ANTLR, and Rats! [7], enable pro-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

DLS’16, November 1, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4445-6/16/11...
http://dx.doi.org/10.1145/2989225.2989231

108

grammers to override rules from the parent grammar, do

“super-sends”, etc. But while these mechanisms provide

adequate support for extending the syntax of a grammar,

they do not make the task of providing different seman-

tic actions any easier: as discussed above, to override a

semantic action (e.g., to change the implementation of

“times” expressions in our calculator) the programmer

has to duplicate the code that specifies the syntax that is

associated with it.

In this paper, we introduce Ohm, a new parser genera-

tor based on Parsing Expression Grammars (PEGs) [5] that

enables programmers to write modular, readable, and ex-

tensible grammars as well as semantic actions. Our design

accomplishes this by enforcing a strict separation between

grammars and semantic actions, both in code, and in time:

• In code. The fact that Ohm’s grammars and semantic

actions are written separately — as in Newspeak’s Exe-

cutable Grammars [1] — leads to more readable gram-

mars, and makes it possible for grammars and seman-

tic actions to be extended independently, using familiar

object-oriented mechanisms. (More on this in Section 4.)

• In time. In Ohm, it is the grammar’s job (and only the

grammar’s job) to determine whether an input is valid;

semantic actions are only evaluated on valid inputs.1 This

leads to a simpler programming model, as the programmer

does not have to worry about the interaction of semantic

actions with backtracking.

The contributions of this paper are (i) the design of the

Ohm parser generator, and (ii) the following novel concepts,

which not only support the separation of grammars from

semantic actions, but also support each other:

• Static checks (Section 2.5) ensure that semantic actions

are “compatible” with the grammar. This can prevent later

changes to the grammar from introducing subtle bugs to

existing semantic actions.

• A novel distinction between lexical and syntactic rules

(Section 3) gives programmers a more readable and less

error-prone way to handle whitespace in their grammars.

(Say goodbye to those pesky “space*” expressions!)

This feature also makes writing semantic actions more

convenient in the presence of the static checks.

• Ohm’s notion of a semantics (Section 2.2), which is a

collection of operations that can be invoked on valid

inputs.

• Extensibility mechanisms for grammars and semantics

(Section 4) that “play nicely” with the aforementioned

static checks. Ohm’s grammars and semantics can be

extended independently of each other, e.g., a programmer

1 This means that Ohm does not support semantic predicates, which results

in a small loss of expressiveness, e.g., it is not currently possible to write

Ohm grammars for context-sensitive languages like Python and HTML.

Arithmetic {

exp = addExp

addExp = addExp "+" mulExp -- plus

| addExp "-" mulExp -- minus

| mulExp

mulExp = mulExp "*" priExp -- times

| mulExp "/" priExp -- div

| priExp

priExp = "(" exp ")" -- paren

| num

num = dig+

dig = "0".."9"

}

Figure 1. Ohm grammar for a language of arithmetic expres-

sions.

can create a new semantics by “subclassing” an existing

semantics without also extending its associated grammar.

The next section introduces Ohm’s grammars, semantics,

and static checks, using the arithmetic language as a running

example.

2. Ohm by Example

Ohm consists of (i) a PEG-based language for writing gram-

mars, and (ii) a library that enables programmers to match

inputs against a given grammar as well as define and use

semantics for their grammars. At the time of this writing,

there are two ohm implementations: Ohm/JS [19], which is

our JavaScript-based reference implementation, and Ohm/S

[14], for Smalltalk. Ohm grammars are platform-independent:

there is only one syntax for writing them, and the same gram-

mar can be used in either of the Ohm implementations. The

libraries, on the other hand, are platform-specific. All of the

examples in this paper are written in Ohm/JS.

In this section, we explain the rationale and implications of

Ohm’s design in the context of a running example: a language

of arithmetic expressions. The full grammar for this language

is shown in Figure 1.

An Ohm grammar has a name (e.g., Arithmetic) and

contains a set of rules. Each rule has a name (e.g., exp,

addExp, etc.) and a body, which can be any valid parsing

expression. The language of parsing expressions supported

by Ohm is summarized in Table 1.

2.1 Recognizing Input

In order to use this grammar to recognize inputs, we must

instantiate it using the Ohm API. If the grammar source is

109

Expression Meaning

"abc" terminal (matches the characters abc)

"a".."z" character range

e1 e2 sequencing

e1 | e2 prioritized choice

x rule application

x<e1, ..., en> parameterized rule application

e* zero or more repetitions

e+ one or more repetitions

&e lookahead

∼e negation

#e lexification

Table 1. The language of Ohm parsing expressions.

stored in a file named “arithmetic.ohm”, we can do this as

follows:

var g =

ohm.grammarFromFile('arithmetic.ohm');

Now we can use the grammar object’s match method to

recognize inputs. match returns a MatchResult instance,

which (among other things) can be used to check whether the

match succeeded or failed. For example:

g.match('1+2*3').succeeded(); // true

g.match('blerg').succeeded(); // false

The match method takes an optional second argument

that specifies the name of the start rule. If the start rule is not

specified, it uses the grammar’s default start rule, which is

the first rule defined in the grammar — in this case, exp.

2.2 Specifying and Using Semantics

Like context free grammars, PEGs describe the syntax of a

language, but they do not specify what to do with valid inputs

in that language — that is the responsibility of semantic

actions. Unlike most parser generators, Ohm does not allow

semantic actions to be written directly in a grammar. Instead,

semantic actions are written in the host language using the

Ohm library. In Ohm/JS, a hypothetical semantic action for

the arithmetic grammar’s num rule might look like this:

var numAction = function(ds) {

return parseInt(ds.sourceString);

};

This function produces a semantic value for an input string

that matches the grammar’s num rule. For example, for an

input string containing the text 42 (as a string), it would

return the number 42. It does this by calling JavaScript’s

built-in parseInt function, passing it the portion of the input

stream that was consumed by num’s body expression (which

is available as ds.sourceString).

Typically, the programmer writes a set of semantic actions,

one for each of the rules in the grammar. This set forms a

family of related actions, much like different methods in

a generic function. We call a family of semantic actions

an operation. In Ohm/JS, when the programmer creates an

operation, he must provide an object that maps rule names to

semantic actions.

Consider the semantic actions for an operation that evalu-

ates expressions in our arithmetic grammar2:

var actions = {

exp(e) { ... },

addExp(e) { ... },

mulExp(n) { ... },

num(ds) {

return parseInt(ds.sourceString);

},

...

}

This is known as an action dictionary, and it is simply a

JavaScript object whose properties match up with the names

of rules in the associated grammar. The value of each property

is a function that implements the semantic action for its

corresponding rule.

There are three “special” action names that can also appear

in action dictionaries:

• _nonterminal is a catch-all action, similar to Smalltalk’s

doesNotUnderstand: or Ruby’s method_missing.

• _terminal is used for terminal expressions, e.g. "abc".

• _iter is relevant to repetition expressions, which are

discussed later in this paper.

These special action names offer a form of metaprogramming,

making it easy for many different expressions to share the

same semantic action —- without any boilerplate or dupli-

cated code. In many parser generators (e.g., OMeta), we must

write a separate semantic action for every rule in the grammar,

even if they are nearly identical.

It is often convenient for one operation to depend on an-

other. For example, a prettyPrint operation for arithmetic

expressions might depend on a toAST operation. An opera-

tion is a family of actions, and we call a family of operations

a semantics. Every operation in Ohm belongs to a particular

semantics. To create a semantics for a given grammar, we call

the grammar’s createSemantics() method. Then, to add

an operation to that semantics, we call its addOperation

method, passing an action dictionary:

var s = g.createSemantics();

s.addOperation('eval()', {

exp(e) { ... },

...

});

2 The examples in this paper use some features of the ECMAScript® 2015

(also known as ES6) syntax — specifically, method definitions and arrow

function definitions.

110

Invoking an operation. A semantics behaves like a func-

tion that takes a single (successful) MatchResult argument

and returns a semantic adapter. A semantic adapter provides

a method corresponding to each operation in the semantics.

For example, we can invoke the eval operation by calling an

adapter’s eval() method:

s(g.match('1+2*3')).eval(); // Returns 7

Defining multiple operations. Since a semantics repre-

sents a family of operations, we can of course define other

operations in the same semantics:

s.addOperation('toAST()', {

exp(e) { ... },

...

});

Now the adapters created by this semantics will have both

an eval and a toAST method. We can invoke toAST in the

expected manner: s(matchResult).toAST().

Defining multiple semantics. The same grammar may

have more than one semantics associated with it. For example,

the semantics declared below provides its own typecheck

and eval operations:

var otherS = g.createSemantics();

otherS.addOperation('typecheck()', ...);

otherS.addOperation('eval()', ...);

The operations in s are completely separate from those

in otherS, even when they have the same name (e.g., eval).

This means that a grammar can be used in different ways,

even in the same program, in a completely modular way.

There is no risk of name clashes, accidental overriding, etc.

Note that the same MatchResult instance can be used with

more than one semantics, i.e., the programmer can access the

functionality provided by different semantics for the same

input, without having to parse it multiple times.

Now that we have seen how semantic actions are organized

in the Ohm/JS API, we turn our attention to the mechanics of

writing the semantic actions themselves.

2.3 Writing Semantic Actions

The number of arguments of a semantic action is determined

by the arity of the body of its corresponding rule in the gram-

mar. Informally, we can say that the arity of an expression is

generally equal to the “number of things” matched by that

expression. For example, recall the definition of the exp rule

from Figure 1:

exp = addExp

A semantic action for exp will have one argument, because

the rule body consists of a single expression: an application

of the addExp rule. Similarly, the dig rule:

dig = "0".."9"

Expression Arity

"abc" 1

"a".."z" 1

e1 e2 Arity(e1) + Arity(e2)
e1 | e2 Arity(e1) ifArity(e1) = Arity(e2)

3

x 1

x<e1, ..., en> 1

e* Arity(e)
e+ Arity(e)
& e Arity(e)
∼ e 0

e Arity(e)

Table 2. The arities of Ohm parsing expressions.

also has an arity of 1. Its body is a character range expression,

which consumes a single character from the input stream (in

this case, any character from 0 to 9, inclusive).

The arity of each type of parsing expression in Ohm is

summarized in Table 2.

Each argument to a semantic action is a semantic adapter,

just like the object produced by s(matchResult). At this

point, the role of adapters may be more clear: a semantic

adapter is an interface to a concrete syntax tree (CST)

node. It provides a way of evaluating semantic operations on

a particular node. In fact, adapters are the only interface to

CST nodes. This was a key design decision behind Ohm’s

modular semantics, which we discuss in detail in Section 5.

To invoke an operation on a semantics adapter, we simply

call one of its methods, e.g., eval(). For example, here is a

possible semantic action for the exp rule:

exp(e) {

return e.eval();

}

The call e.eval() returns the semantic value of exp’s

body expression, which is provided by the addExp action —

so we’ll need to add that action too. Recall the definition of

addExp:

addExp = addExp "+" mulExp -- plus

| addExp "-" mulExp -- minus

| mulExp

The body of this rule is an alternation of three parsing

expressions. The expression in the first branch:

addExp "+" mulExp

has arity 3. That is, it will produce 3 CST nodes if it suc-

cessfully matches the input: one for the addExp application,

one for the terminal "+", and one for the mulExp application.

Likewise, the expression in the second branch also has arity

3. However, the third branch:

3 An alternation containing expressions with different arities is a static error.

111

mulExp

only has arity 1.

This mismatch of arities in the three branches would be

problematic for someone who is trying to write a semantic

action for addExp. How many arguments should that seman-

tic action take? It would be awkward if it depended on which

branch succeeded — the programmer would be forced to

check the value of arguments.length in order to imple-

ment an appropriate action. To make matters worse, that

would make it impossible for Ohm to check the arities of se-

mantic actions at operation creation time, which would in turn

make programming with Ohm more error-prone. For these

reasons, Ohm requires every branch of an alternation ex-

pression to have the same arity. This check is performed

statically on the grammar.

We could address this by refactoring the first two choices

of addExp into their own rules:

addExp = addExp_plus

| addExp_minus

| mulExp

addExp_plus = addExp "+" mulExp

addExp_minus = addExp "-" mulExp

Now each branch in addExp has arity 1, and both addExp_-

plus and addExp_minus have arity 3, and everything is

consistent. The downside of this refactoring is that it has

made our grammar more verbose.

As a convenience, Ohm provides a syntactic sugar for

this common construction: the programmer can write case

labels (e.g., -- plus) as a way of declaring a new rule

(e.g., addExp_plus) inline. Thus, the original arithmetic

grammar shown in Figure 1 (which includes several case

labels) desugars to the refactored version above.

Case labels are only required when the branches of an

alternation have different arities. A simple alternation like

username | email does not require case labels, since both

branches have the same arity.

The case labels mean that to implement the semantics

for addExp, we write three separate semantic actions for the

main addExp rule:

addExp_plus(a, op, b) {

return a.eval() + b.eval();

},

addExp_minus(a, op, b) {

return a.eval() - b.eval();

},

addExp(e) {

return e.eval();

}

Notice that the semantic action for the addExp rule is

simply calling eval() on its only argument. In Ohm, we

refer to this a pass-through action. Pass-through actions are

very common, so as a convenience, any rule with arity 1

that does not have a semantic action automatically gets pass-

through behavior. This prevents the programmer from having

to write boilerplate code, and enables him to focus on the

more interesting semantic actions.

The semantic actions for mulExp can be written in a very

similar manner to addExp. We continue by writing a semantic

action for the priExp_paren case, which is straightforward:

priExp_paren(open, e, close) {

return e.eval();

}

The num rule is a bit more interesting. Recall its definition

in the arithmetic grammar:

num = dig+

The rule body uses the one-or-more operator (+), which

is one of the PEG repetition operators. No matter how many

times dig is matched, the expression dig+ is represented by

a single repetition node in the parse tree — so the num action

takes a single argument.

The semantic adapter for a repetition node has special

behavior. Its interface is the same as any other adapter in the

same semantics, but its methods return arrays, which are the

result of mapping the operation over all of the matches. As

an example, consider the following semantic actions for the

num and dig rules:

num(ds) {

var digits = ds.eval();

return digits.reduce(

(acc, d) => acc * 10 + d,

0);

},

dig(d) {

// In a semantic action, `this` is bound to

// a semantic adapter for the current node.

var ch = this.sourceString;

return ch.charCodeAt(0) -

"0".charCodeAt(0);

}

In num’s semantic action, the call to ds.eval() returns

an array of one or more values, i.e., the results of invoking

the dig action for each successful match of the dig rule.

However, we could write these actions more simply. The

num action could simply use JavaScript’s built-in parseInt

to convert its entire matched input to a number. If we do

that, then we can avoid writing a semantic action for dig

altogether, because it is never used.

2.4 Putting It All Together

A complete definition of the eval operation is shown in

Figure 2. It contains the simplified semantic action for num

that we mentioned above, and omits the unnecessary pass-

through actions for eval, addExp, mulExp, and priExp.

112

s.addOperation('eval()', {

addExp_plus(a, op, b) {

return a.eval() + b.eval();

},

addExp_minus(a, op, b) {

return a.eval() - b.eval();

},

mulExp_times(a, op, b) {

return a.eval() * b.eval();

},

mulExp_div(a, op, b) {

return a.eval() / b.eval();

},

priExp_paren(open, e, close) {

return e.eval();

},

num(ds) {

return parseInt(ds.sourceString);

}

});

Figure 2. Definition of an eval() operation for the arithmetic

grammar.

Together, the grammar defined in Figure 1 and the eval

operation defined in Figure 2 implement a working calculator:

var matchResult = g.match('1+2*3');

s(matchResult).eval(); // Returns 7

2.5 Static Checks

While the separation of syntax and semantics has benefits for

modularity, it also introduces some challenges. In particular,

if the grammar is modified, it can easily fall out of step

with the semantics. In order to mitigate these problems,

addOperation performs two important static checks:

1. It verifies that each key in the action dictionary corre-

sponds to a rule in the grammar. This prevents operations

from breaking silently when a rule is renamed or removed

from the grammar: in this case, the call to addOperation

(i.e., the definition of the operation) will raise an error

indicating that the action dictionary must be updated.

2. It checks that the number of formal parameters of each

function in the action dictionary is equal to the arity of

the corresponding rule in the grammar. This makes the

connection between the grammar and the semantic actions

more rigid, and prevents operations from breaking silently

when the syntax of the language changes.

Note that the second check relies on the fact that branches

of an alternation expression are required to have the same

arity (as described in Section 2.3). Without this property, a

rule like addExp would map to a single semantic action that

could be called with either one or three arguments, requiring

a dynamic check to distinguish between cases. This solution

is brittle in the face of changes to the grammar, e.g., if a new

case is added or the arity of a case is changed. Ohm’s static

checks help protect the programmer against a large class of

errors that can be caused by such changes.

3. Handling Whitespace in Ohm

If you are familiar with scannerless parsing formalisms,

you may have noticed that the calculator we created in the

previous section does not support spaces in the input. In most

PEG-based parser generators, spaces (and other semantically-

irrelevant characters) must be handled explicitly. For example,

we could implement space skipping by changing our grammar

as follows:

exp = addExp space*

addExp = addExp space* "+" mulExp -- plus

| addExp space* "-" mulExp -- minus

| mulExp

mulExp = ... // similar to addExp

priExp = space* "(" exp space* ")" -- paren

| num

num = space* dig+

...

Space-skipping expressions make it more difficult for a

programmer to “see” the syntax of a language defined by

a grammar. Also, the semantic actions of rules that include

space-skipping expressions would require additional argu-

ments that would more than likely be ignored. To avoid both

of these problems, Ohm handles space skipping implicitly

through a simple convention described below.

3.1 Lexical vs. Syntactic Rules

In Ohm, a rule that begins with an upper-case letter is called a

syntactic rule; all other rules are known as lexical rules. In a

grammar that contains only lexical rules (like our arithmetic

grammar), all whitespace must be explicitly skipped, just like

in other PEG-based parser generators.

Inside a syntactic rule, whitespace characters are implicitly

skipped before matching an expression. For example, the

strings 'ab', ' ab', and ' a b' would all be matched

by the following rule:

Letters = "a" "b"

These same inputs would also be matched by the rule

Letters = letter+.

Figure 3 shows a revised arithmetic grammar that allows

whitespace around operators and expressions.

The only difference between this new version of the arith-

metic grammar and the original version shown in Figure 1 is

that the rules Exp, AddExp, MulExp, and PriExp now begin

with a capital letter — everything else is unchanged. The

names of the semantic actions must also be changed, but they

require no other changes to support this new version of the

grammar.

113

Arithmetic {

Exp = AddExp

AddExp = AddExp "+" MulExp -- plus

| AddExp "-" MulExp -- minus

| MulExp

MulExp = MulExp "*" PriExp -- times

| MulExp "/" PriExp -- div

| PriExp

PriExp = "(" Exp ")" -- paren

| num

num = dig+

dig = "0".."9"

}

Figure 3. Modified arithmetic grammar which allows whites-

pace around operators and expressions.

With the modified arithmetic grammar, the following

inputs will now be accepted:

g.match(' 1 +2').succeeded(); // true

g.match('2* 3 ').succeeded(); // true

Note that when the start rule (Exp in this example) is a

syntactic rule, it also consumes trailing whitespace, as shown

in the second call to match() above.

Ohm’s syntactic rules implicitly skip anything that

matches the grammar’s space rule. Every grammar comes

with a default implementation of space, which matches the

traditional whitespace characters (space, tab, line feed, car-

riage return, etc.). A grammar author can optionally extend

or override the built-in space rule, e.g., in order to treat com-

ments as whitespace. Ohm’s grammar extensibility features

are described in the next section.

Sometimes it is necessary to prevent implicit space skip-

ping at a particular point in a syntactic rule. For these cases,

Ohm provides the lexification operator (#). Section 5 de-

scribes how we used the lexification operator to implement

automatic semicolon insertion in a grammar for the JavaScript

language.

4. Extensible Grammars, Modular Semantics

4.1 Grammar Extension

To make it easier to build new languages that are based

on existing ones, Ohm supports grammar extension using

familiar mechanisms from object-oriented programming.

An Ohm grammar is analogous to a class, and its rules

are analogous to methods. When writing a new grammar,

a programmer may extend (i.e., inherit from) an existing

grammar, and override or extend its rules. If a grammar does

not explicitly extend another, then it implicitly inherits from

a built-in proto-grammar, which is where space and several

other generally useful rules are declared. Here is an example

of a grammar that inherits from the arithmetic grammar:

BetterArithmetic <: Arithmetic { ... }

A grammar can declare new rules using the = operator,

and override rules using the := operator. This has the same

purpose as the override keyword in C#: it enables early

error detection by raising a compiler error if the user has

made a typo or the original production has been removed in a

new version of the parent grammar.

The += operator can be used to add a new case at the

beginning of a rule. New cases are inserted at the beginning of

a rule because PEGs give preference to earlier branches in an

alternation, meaning that earlier expressions in an alternation

have more control over the parse. For example, we can use

+= to add support for some commonly-used constants to the

BetterArithmetic grammar:

BetterArithmetic <: Arithmetic {

PriExp += const

const = "pi" -- pi

| "e" -- e

}

The original definition of PriExp was:

PriExp = "(" Exp ")" -- paren

| num

In the BetterArithmetic grammar, the line PriExp +=

const is equivalent to having overridden the PriExp rule,

inserting const before the original two cases:

PriExp := const

| "(" Exp ")" -- paren

| num

However, writing the rule that way would mean that if

the definition of PriExp in the arithmetic grammar were

ever changed, BetterArithmetic would have to be kept

manually in sync. Using the += operator, the programmer can

accurately express an intention to extend (and not replace)

the definition in the base grammar.4

If we add this grammar to the same file that contains the

original arithmetic grammar (“arithmetic.ohm”), we can use

ohm.grammarsFromFile to instantiate both grammars:

var grammars =

ohm.grammarsFromFile('arithmetic.ohm');

var g2 = grammars.BetterArithmetic;

4 Note that in PEGs, unlike context free grammars, extending a rule does not

imply that the resulting grammar accepts a superset of the inputs accepted

by the original. This is due to the semantics of prioritized choice.

114

Now we can use g2 to match arithmetic expressions that

contain the constants e and pi:

g2.match('2 * pi * 8').succeeded(); // true

g.match('2 * pi * 8').succeeded(); // false

4.2 Semantic Extension

Recognizing valid expressions is one thing, but we also

want to evaluate expressions in our BetterArithmetic

language. If we try to use the eval operation we defined

previously, Ohm will throw an error: “Cannot use a MatchRe-

sult from grammar ‘BetterArithmetic’ with a semantics for

‘Arithmetic’ ”.

This makes sense: BetterArithmetic is a different

grammar from Arithmetic. Their syntactic similarity does

not imply that their semantics are the same. In fact, in

our original semantics for Arithmetic, we could not have

specified how to evaluate constants because they weren’t even

part of the language!

To evaluate expressions in our BetterArithmetic gram-

mar, we could create a new semantics (via g2.createSem-

antics()) and define its eval operation from scratch, but

that would result in lots of duplicated code. Ohm avoids this

by providing a mechanism for extending semantics and their

operations, in much the same way that you can extend gram-

mars. The only thing required to extend the eval operation

to our BetterArithmetic grammar is to implement actions

for the two branches of the const rule. Here is how we could

do that:

var s2 = g2.extendSemantics(s);

s2.extendOperation('eval', {

const_pi(c) {

return Math.PI;

},

const_e(c) {

return Math.E;

}

});

The extendSemantics method creates a new semantics

that inherits operations from another semantics. To extend

an operation, we call extendOperation, passing an action

dictionary. The actions will be combined with the actions

from the parent semantics — and if there are duplicates, the

new actions override the old ones.

After doing that, s2’s eval can be used to evaluate

expressions containing pi and e:

// Returns 50.26548245743669

s2(g2.match('2 * pi * 8')).eval();

In this process, two important checks are made to ensure

that the resulting operation is safe:

• Grammar compatibility. A grammar’s extendSemantics

method ensures that its argument is a semantics for that

grammar or one of its parent grammars.

• Action arities. Similarly, a semantics’ extendOperation

method ensures that the resulting action dictionary has the

correct arities for all the rules in its associated grammar —

whether they were declared in that grammar itself, or in-

herited, overridden, or extended from the parent grammar.

Note that we did not have to implement a new action for

num, since (a) its arity is unchanged from Arithmetic,

and (b) its behavior is unchanged (we still want the default

pass-through behavior). This check is performed for all of

the operations of an extended semantics, including those

which were only inherited but not overridden, the first

time it is used with a MatchResult. (This is necessary

because some rules may have been overridden, which

could have caused their arities to change.)

5. Case Study: JavaScript

In the past two years, we have found Ohm to be useful in

a number of real-world settings. These experiences have

shaped the design and helped convince us that the language

is sufficiently powerful, while being easy to learn and use.

In this section, we describe our experience using Ohm to

parse and process JavaScript. This is an interesting case study

because:

• JavaScript’s automatic semicolon insertion is a challeng-

ing case for Ohm’s implicit whitespace skipping features,

and

• the continuing evolution of the language (the 6th version

of the specification was released in 2015) offers a real-

world example of grammar and semantics extension.

Our JavaScript parser is based on version 5.1 of the EC-

MAScript Language Specification (known as ES5). The lan-

guage is implemented with a 335-line grammar which lives

in the “examples” directory of the Ohm GitHub repository

[19].

5.1 Handling Automatic Semicolon Insertion

Like most ALGOL-influenced languages (e.g., C, C++, Java),

JavaScript uses the semicolon (;) as a statement termina-

tor. However, it allows semicolons to be omitted from the

source code in certain situations. The ECMAScript Language

Specification [4] details the rules under which semicolons are

“automatically inserted” — i.e., the cases in which semicolons

are not syntactically required.

In an earlier version of Ohm, this posed a problem for

our ES5 grammar. Under certain conditions, ES5 statements

may be terminated with a line terminator character rather

than a semicolon. However, a line terminator is otherwise

considered to be whitespace, meaning it is implicitly skipped

over inside syntactic rules, which make up the bulk of our

grammar.

The solution to this was to add the lexification operator

(#) to Ohm. The lexification operator can be used to prevent

implicit space skipping inside a syntactic rule. For exam-

115

ES6 <: ES5 {

AssignmentExpression<guardIn> += ArrowFunction<guardIn>

ArrowFunction<guardIn> = ArrowParameters #(spacesNoNL "=>") ConciseBody<guardIn>

ArrowParameters = BindingIdentifier

| CoverParenthesizedExpressionAndArrowParameterList

...

}

Figure 4. Fragment of an Ohm grammar implementing support for ES6 arrow function definitions. The full source code is

available in the Ohm GitHub repository [19].

ple, consider the VariableStatement rule from our ES5

grammar:

VariableStatement =

var VariableDeclarationList<withIn> #sc

The expression #sc means: apply the sc rule, but do

not implicitly skip spaces before it. This allows the sc rule

to explicitly deal with the spaces — making it possible to

implement the automatic semicolon insertion rules. If we

had just written sc, Ohm’s implicit space skipping would

have taken effect before the application of sc, potentially

consuming a syntactically-significant line terminator.

Without the lexification operator, the alternative would

have been to rewrite all of the affected rules as lexical (rather

than syntactic) rules. Doing so would have required the

insertion of explicit space skipping throughout those rules,

causing problems with readability in both the grammar and

the semantic actions. The lexification operator, on the other

hand, gives us an “escape hatch” that only requires explicit

space skipping where it is absolutely necessary.

5.2 Implementing ES6 Arrow Functions

In addition to the ES5 grammar, we have also implemented

some features of the ES6 specification. We did this by

creating a new ES6 grammar that extends the ES5 grammar.

Figure 4 shows a fragment of the grammar that implements

support for so-called “arrow functions”.

Ohm supports parameterized rules: rules that take parsing

expressions as arguments. The grammar in Figure 4 uses

parameterized rules to supply the necessary context for

handling ES5 in-expressions while avoiding the wholesale

duplication of rules seen in the official specification [4].

In addition to grammar extension, we also used Ohm’s

support for extending semantics in our ES6 example. First,

we implemented a toES5 operation in a semantics for our

ES5 grammar. This operation consists of only two semantic

actions:

• The _terminal action simply returns the original source

code for the terminal.

• The _nonterminal action invokes toES5() on all the

child nodes, and concatenates their output.

In other words, for input that matches the ES5 grammar,

this operation is simply the identity transformation. However,

its purpose is similar to the “template method” design pattern

[6]: by invoking toES5() on each node in the tree, it is

open for extension in a child semantics. For example, we can

implement an ES6-to-ES5 compiler by extending the toES5

operation with semantic actions for the ES6 forms:

var s = g.extendSemantics(es5semantics);

s.extendOperation('toES5', {

ArrowFunction(params, _, arrow, body) {

var def =

'function ' + params.toES5() +

' ' + body.toES5();

if (body.mentionsThis()) {

def += '.bind(this)';

}

return def;

},

ArrowParameters_unparenthesized(id) {

return '(' + id.toES5() + ')';

},

ConciseBody_noBraces(e) {

return '{ return ' + e.toES5() + ' }';

}

});

One of the features of ES6 arrow functions is that the

this keyword is lexically bound (which is not true in regular

JavaScript functions). In our implementation, the semantic

action for ArrowFunction checks if this is used anywhere

in the function body. This is done using another operation

called mentionsThis:

s.addOperation('mentionsThis()', {

this(_) { return true; },

_terminal() { return false; },

_nonterminal(c) {

return c.some(n => n.mentionsThis());

},

_iter(arr) {

return arr.some(n => n.mentionsThis());

}

});

116

Ohm’s modular semantics make it easy to define “helper”

operations like this inside of a semantics, with no danger of

collision with operations defined by another semantics.

5.3 A Note on Performance

Though a detailed analysis of Ohm’s performance is outside

the scope of this paper, we will briefly discuss the perfor-

mance characteristics of our modular semantic actions.

We have used our ES5 grammar and the toES5 operation

to parse and re-emit the complete source code of Ohm

(approx. 5000 LOC). This represents a kind of worst case

for the overhead of our framework, because it visits every

single node in the tree (including terminals) and the semantic

actions themselves perform very little work.

The results showed that the code generation step — i.e.,

the execution of the toES5 operation — accounts for approx-

imately 10% of the total execution time. For comparison,

we implemented toES5 as a recursive function that directly

walks the parser’s concrete syntax tree, which resulted in

a total speedup of 6.8%. Based on these results, and given

that we haven’t yet put much effort into performance, we

believe that the overhead of Ohm’s modular semantic actions

is unlikely to be a limiting factor in real-world use.

6. Related Work

There are many parser generators, compiler-compilers, and

combinator libraries out there, some of which also enforce

a separation between grammars and semantic actions. To

enable a meaningful comparison with our particular approach,

we evaluate each piece or category of related work based on

the following scenarios:

• pure grammar → operation: A grammar already exists,

but it has no semantic actions. The programmer wants to

specify what to do with each syntactic construct in the

language.

• the “repetitive semantic actions” problem: The pro-

grammer wants to treat all of the syntactic constructs in

the language the same way by default (i.e., with the same

semantic action) and provide specialized semantic actions

for a few of them.

• many operations: The programmer wants to do more

than one thing with the grammar, e.g., implement an

interpreter and a pretty-printer.

• modified operation: An operation (or grammar with

semantic actions) already exists; the programmer wants

to create a variant of this operation in which certain

constructs are handled differently, e.g., make the “+”

operator in our calculator multiply rather than add its

operands.

• modified grammar and modified operation: As in the

previous scenario, a grammar with semantic actions al-

ready exists. The programmer wants to both create a vari-

ant of the original grammar that supports a new syntactic

construct (e.g., add a new operator to our arithmetic lan-

guage) and specify how to handle the new construct.

As we have demonstrated in previous sections, Ohm enables

programmers to accomplish all of these tasks without any

code duplication.

6.1 Traditional Parser Generators

In this category, we include parser generators in which pro-

grammers write semantic actions directly in their grammars.

META II [15] is an early example of “a compiler-writing lan-

guage that consists of syntax equations resembling Backus

normal form and into which instructions to output assembly

language commands are inserted.” A modern, widely-used

example of this category of parser generator is Yacc.

In the pure grammar → operation scenario, the user of

a traditional parser generator may avoid duplicating code by

modifying the original grammar in place to add the desired

semantic actions. But later, if he needs to do something

else with the language — i.e., if he finds himself in the

many operations scenario — he will have to duplicate the

“pure” part of the grammar for each new operation. This

creates serious maintenance problems, as future changes to

the syntax of the language will require onerous and error-

prone modifications to all of the duplicates.

Traditional parser generators do not offer a solution to the

the “repetitive semantic actions” problem; the program-

mer is forced to duplicate the same semantic action for most

of the rules in the grammar. Even if the programmer places

the duplicated semantic action code in a function, he will still

have to write identical semantic actions — which are now

calls to that function — for most of the rules in the grammar.

To address the modified operation scenario, the program-

mer must duplicate all of the original grammar and most

of its semantic actions, and in the modified grammar and

modified operation scenario, not only the original grammar

but all of its semantic actions must be duplicated.

6.1.1 Variants with Support for Grammar Inheritance

Some of the parser generators in this category support gram-

mar inheritance, rule overriding, etc. Examples include

OMeta, ANTLR, and Rats!.

This form of object-oriented extensibility for grammars

is not helpful in the pure grammar → operation and many

operations scenarios, since in order to specify a semantic

action for a particular syntactic construct, the programmer

still has to duplicate the part of the grammar that specifies

its syntax. However, it does enable the programmer to avoid

some (but not all) code duplication in the modified operation

scenario: he can write a grammar that extends the original

grammar — thus inheriting all of its rules and semantic

actions — and override only the rules that correspond to

the syntactic constructs that should be handled by semantic

actions that are different from those of the parent grammar.

In this case, only the parts of the parent grammar that specify

117

the syntax of the overridden rules are duplicated. Object-

oriented variants of traditional parser generators also support

the modified grammar and modified operation scenario

with little or no code duplication, but like other traditional

parser generators, do not offer a solution for the “repetitive

semantic actions” problem.

6.1.2 The “AST Solution”

While traditional parser generators are not explicitly designed

to keep grammars separate from semantic actions, they do

not prevent this separation. It is common for programmers

to write a single set of semantic actions that construct an

abstract syntax tree (AST). The particular representation of

the AST — classes, algebraic data types, etc. — in turn

determines the representation of the equivalent of Ohm’s

operations, as well as the means of extending them. All the

extensibility mechanisms of the host language are available

to the programmer, but conversely, the programmer must fit

their design to the mechanisms provided.

For example, a programmer using an object-oriented

language may write AST classes for each syntactic construct

in the language. “Operations” may then be implemented

as methods in these classes. However, when implementing

multiple distinct operations using methods, care must be

taken to avoid name clashes or modularity problems. One

possible approach is to write support for visitors [6] into the

AST classes, and to implement operations as visitors; but no

matter the approach chosen, the programmer is left to solve

this problem on their own.

Abstract syntax captures the essence of a language, but

may elide aspects of the input that are important for some

applications. For example, syntax highlighting can depend

on fine concrete details of the input, and an AST may

not automatically record enough information to highlight

effectively. Special care must be taken by the programmer

writing supposedly general-purpose parsing code to retain

just those not-obviously-significant aspects of the concrete

syntax relevant to such applications.

6.2 Parser Generators with Built-In Support for the

“AST Solution”

Some parser generators automatically synthesize AST classes

from the rules of a pure grammar. As an example, JTB [12]

provides this functionality for JavaCC [16] grammars. This

design offers the benefits of the “AST solution” (see Section

6.1.2) while saving the programmer the time and effort of

building the AST classes manually. Furthermore, the parser

generator can anticipate forms of extensibility required in the

context of parsing that are not offered directly by the host

language itself, helping the programmer express their intent

more directly. For example, the parser generator may automat-

ically produce a suitable visitor implementation. However, as

with all abstract-syntax-based approaches, important details

may be lost in the translation from concrete syntax.

6.3 Parser Combinators

In functional languages, it is common for programmers to

use parser combinator libraries such as Haskell’s Parsec

[10] to build recursive-descent parsers. These libraries typ-

ically model parsers as functions, and provide higher-order

functions (combinators) for composing them.

While a large number parser combinator libraries are avail-

able for functional languages, to the best of our knowledge

none of them enable the programmer to modularly separate

code that recognizes the input (grammars) from code that

processes it (semantic actions). There are, however, object-

oriented parser combinator libraries that do achieve this form

of modularity; we discuss one of them below.

6.3.1 Executable Grammars in Newspeak

Newspeak’s Executable Grammars (NSEGs) [1] are a parser

combinator library written in a state-of-the-art object-oriented

language [3]. Like Ohm, the library separates grammars from

semantic actions, and leverages various language features of

Newspeak to provide better modularity than parser generators

in the previous categories. NSEGs encourage the programmer

to write a “pure” grammar as a class, which is customized

for each operation via a mixin that supplies specific semantic

actions.

NSEGs support all of our scenarios without any code

duplication, with the exception of the modified operation

scenario. The problem is that, following transformation by a

mixin, a rule’s raw CST is no longer available: the semantic

value generated by the mixin takes its place. Subsequent

mixins that need access to the CST must duplicate the relevant

fragment of the grammar to recover it.

Executable Grammars offer extensibility of both gram-

mars and semantic actions by leveraging language fea-

tures such as mixins and nested classes that are offered

by Newspeak. But the fact that these features are not avail-

able in most mainstream languages limits NSEG’s potential

as a cross-language design. Ohm provides its own mecha-

nisms for supporting modularity and extensibility, which are

independent of the host language it happens to be running on.

This lets programmers write semantic actions in a language

they are already familiar with, and enables access to the

libraries available for that language.

While Ohm performs arity checks on semantic actions

that help avoid common classes of error, NSEGs offer no

equivalent. An NSEG semantic action will fail at parse-time

if its arity is incorrect, whereas Ohm will reject an incorrect

semantic action dictionary as it is constructed, rather than

when it is used. The lack of static checks on semantic actions

in NSEGs is especially problematic in cases where the block

once had the correct number of arguments, but where the

grammar has subsequently evolved. Newspeak’s advanced

reflection facility [2] could, in a future version of the NSEG

library, be used to detect arity errors at grammar construction

time, as Ohm does.

118

6.4 Object Algebras

Ohm’s implementation leverages a design pattern that is sim-

ilar to object algebras [11], and as a result our system enjoys

the same modularity and extensibility that they provide. In

object algebra parlance, an Ohm grammar implicitly specifies

(i) an object algebra interface, and (ii) a mapping from inputs

in concrete syntax to thunks, or instantiation patterns, that

are parameterized by particular implementation of that object

algebra interface.

A couple of things are worth noting about the relationship

between Ohm and object algebras. First, when the program-

mer invokes an operation on a match result, Ohm does not

eagerly evaluate that operation on its sub-expressions. Which

sub-expressions are evaluated, and the order in which they

are evaluated, is determined only by the semantic actions that

implement the operation. This is a useful form of modularity

that the programmer does not get “for free” when using object

algebras in an eager language like JavaScript. Second, Ohm’s

operations can be mutually recursive, i.e., it is possible for

an operation op1 to use another operation op2 in its imple-

mentation, and vice-versa. Support for mutually-recursive

operations comes from our semantics abstraction, which does

not have an analog in object algebras.

7. Conclusions and Future Work

In this paper, we have described the design of the Ohm parser

generator and demonstrated the benefits of its strict separation

of syntax and semantics. As discussed in Section 5, Ohm has

already proven useful in real-world scenarios.

While we have found Ohm’s expressive power to be

sufficient for most tasks, several users have requested better

support for parsing context-sensitive languages like HTML

and Python. We plan to investigate whether a solution like

parsing contexts [9] could be adapted to Ohm.

We also plan to implement support for incremental parsing,

so that small changes to a previously-parsed input do not

require the entire input to be reparsed. This would make Ohm

more suitable for interactive use cases with potentially large

inputs — such as syntax highlighting in an IDE.

Finally, as the language stabilizes, we would like to create

and curate a publicly-available collection of Ohm grammars

that anyone can contribute to and use. The complete sep-

aration of grammars and semantic actions in Ohm makes

its grammars truly “cross-platform,” which means that pro-

grammers can use the same grammar with different Ohm

implementations.

Acknowledgments

The authors would like to thank Gilad Bracha, Jonathan

Edwards, Saketh Kasibatla, Meixian Li, Todd Millstein,

Yoshiki Ohshima, Marko Röder, Tijs van der Storm, Laurie

Tratt, and the anonymous reviewers for feedback on this work

and earlier drafts of this paper.

References

[1] G. Bracha. Executable grammars in Newspeak.

Electronic Notes in Theoretical Computer Science, 193:

3–18, 2007.

[2] G. Bracha and D. Ungar. Mirrors: design principles for

meta-level facilities of object-oriented programming

languages. In Proc. OOPSLA, pages 331–344, 2004.

[3] G. Bracha et al. Modules as objects in Newspeak. In

Proc. ECOOP, pages 405–428. Springer, 2010.

[4] Ecma International. ECMAScript 2015 Language

Specification. Geneva, 6th edition, June 2015.

[5] B. Ford. Parsing expression grammars: A

recognition-based syntactic foundation. In Proc. POPL,

pages 111–122. ACM, 2004.

[6] E. Gamma et al. Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley, 1995.

[7] R. Grimm. Better extensibility through modular syntax.

In Proc. PLDI, pages 38–51. ACM, 2006.

[8] S. C. Johnson. Yacc: Yet another compiler-compiler. In

Technical Report CSTR 32. Bell Laboratories, 1975.

[9] J. Kurš, M. Lungu, and O. Nierstrasz. Top-down

parsing with parsing contexts. In Proc. IWST, 2014.

[10] D. Leijen and E. Meijer. Parsec: Direct style monadic

parser combinators for the real world. 2002.

[11] B. C. d. S. Oliveira and W. R. Cook. Extensibility for

the masses: Practical extensibility with object algebras.

In Proc. ECOOP, pages 2–27. Springer, 2012.

[12] J. Palsberg, K. Tao, and W. Wang. Java Tree Builder

website, 1997. URL

http://compilers.cs.ucla.edu/jtb/.

[13] T. Parr and R. Quong. ANTLR: A predicated LL(k)

parser generator. Software—Practice and Experience,

25(7):789–810, 1995.

[14] P. Rein, R. Hirschfeld, and M. Taeumel. Gramada:

Immediacy in programming language development. In

Proc. Onward! ACM, 2016.

[15] D. V. Schorre. META II: a syntax-oriented compiler

writing language. In Proc. ACM Nat. Conf. ACM, 1964.

[16] S. Viswanadha and S. Sankar. JavaCC website. URL

https://javacc.java.net/.

[17] A. Warth. Experimenting with Programming

Languages. ProQuest, 2009.

[18] A. Warth and I. Piumarta. OMeta: an object-oriented

language for pattern matching. In Proc. DLS, pages

11–19. ACM, 2007.

[19] A. Warth, P. Dubroy, and T. Garnock-Jones. Ohm/JS

repository, 2014. URL

https://github.com/cdglabs/ohm.

119

http://compilers.cs.ucla.edu/jtb/
https://javacc.java.net/
https://github.com/cdglabs/ohm

	Introduction
	Ohm by Example
	Recognizing Input
	Specifying and Using Semantics
	Writing Semantic Actions
	Putting It All Together
	Static Checks

	Handling Whitespace in Ohm
	Lexical vs. Syntactic Rules

	Extensible Grammars, Modular Semantics
	Grammar Extension
	Semantic Extension

	Case Study: JavaScript
	Handling Automatic Semicolon Insertion
	Implementing ES6 Arrow Functions
	A Note on Performance

	Related Work
	Traditional Parser Generators
	Variants with Support for Grammar Inheritance
	The AST Solution

	Parser Generators with Built-In Support for the AST Solution
	Parser Combinators
	Executable Grammars in Newspeak

	Object Algebras

	Conclusions and Future Work

